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Abstract

This paper presents the concept of a service colony and its character-
istics. A service colony is a novel architectural style for developing
a software system as a group of autonomous software services co-
operating to fulfill the objectives of the system. Each inhabitant
service in the colony implements a specific system functionality,
collaborates with the other services, and makes proactive decisions
that impact its performance and interaction patterns with other
inhabitants. By increasing the level of self-awareness and autonomy
available to individual system components, the resulting system
is increasingly more decentralized, distributed, flexible, adaptable,
distributed, modular, robust, and fault-tolerant.
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1 Introduction

The architecture of a software system defines its structure and
behavior in the context of the environment in which the system
operates. Software system architectures evolve to be compatible
with changing customer demands. For example, enterprise appli-
cation architectures have evolved from legacy mainframe-based
software systems and service-oriented architectures to microser-
vices architectures [1, 23, 30]. Cloud-based technologies accelerate
this transition by capitalizing on their scalability, flexibility, secu-
rity, cost-effectiveness, and monitoring capabilities. The challenges
of modern software systems, however, concern the increasing com-
plexity of managing distributed architectures in highly dynamic
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environments. Despite changes occurring in its environment, a
software system must continue to operate reliably and efficiently,
delivering its functionalities to the users. Therefore, it is desirable
to allow systems to adjust their structures and behaviors at runtime
based on the environmental changes to enhance the transparency,
elasticity, resilience, and deployment management [5].

Due to substantial investments already made in software sys-
tems, manually migrating them to new architectural styles is often
infeasible. Automated enhancement of existing systems to meet cur-
rent and future requirements is a more reasonable and cost-effective
alternative. However, ensuring continuous operation under varying
conditions often requires extensive human testing and supervision,
leading to significant costs for configuring, troubleshooting, and
maintaining applications [2]. As a result, there is an increasing
demand for automated management and monitoring of distributed
systems to reduce costs while ensuring their robustness and quality.

Self-adaptive software systems emerged to reduce uncertainty
and complexity in dynamic operating environments [2]. They aim
to improve the reliability, availability, flexibility, and performance
of systems [28]. A self-adaptive autonomous software system mon-
itors its internal and external states, identifying when and how to
reconfigure to manage new conditions and dynamically adapt the
software architecture at runtime [28]. Developing a self-adaptive
software system is challenging due to conflicting system goals, the
need to monitor different quality of service (QoS) properties, and
handling complex mechanisms of adaptation and their effects [3].
Once developed, self-adaptive systems can perform self-configuring,
self-healing, self-optimizing, and self-protecting functions [6, 18].

With the increased demand for microservices-based systems,
self-adaptive microservices have gained attention. Even though
decentralized decision-making and structural modifications can
increase the system’s adaptability, the often practiced strategy in
this space is a top-down architecture with centralized monitoring
and decision-making components [22]. This approach can support
the development of agent-based software systems with improved
autonomy in individual sub-systems while achieving the overall
system’s goals [15, 16]. Existing self-adaptive microservice systems
focus on monitoring and managing the adaptation control loop
and self-healing properties of the system. The prominent adapta-
tion strategy is reactive adaptation, where the adaptation solution
applies when the problem occurs [5]. Structural changes in the ap-
plication layer via service aggregations and splittings, as well as the
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introduction and removal of communication links between system
services, would increase the level of flexibility of self-adaptive sys-
tems, providing scope for autonomous adaptations of the system’s
architecture. However, instead of the application layer, the focus
in self-adaptive microservices is often on the management of the
infrastructure layer, aiming to optimize system performance. Addi-
tionally, aspects relevant to the requirements of edge computing and
executing systems under resource-constrained environments [33]
are essential characteristics of future software systems to enhance
the quality of the services provided to end users.

This paper introduces service colonies, a software architectural
style for developing systems as groups of autonomous software
services that cooperate to fulfill the global objectives of the overall
system, increasing the level of autonomy and intelligence of the
distributed (micro)services-based systems. Each inhabitant service
of a colony fulfills a specific part of the functionality of the overall
system the colony implements. By following prescribed or acquired
through learning rules and by interacting with other inhabitants,
the services demonstrate a swarm-like global intelligence in adapt-
ing the individual services, their deployment in the environment,
and the configuration of communication links between the services
and the environment that ensures continuous effective and efficient
performance of the system. Though individual services can have
different roles, no system components are envisioned to implement
centralized control over the behavior and configuration of the over-
all system. An inhabitant service of a colony can interact with other
services and the environment. Through interactions of individual
services with the environment, the system interacts with its users
to receive tasks and return results, as well as the hardware, soft-
ware, and network infrastructure in which the system is deployed
to optimize the utilization of the available resources. The interac-
tions between the services ensure complex functions composed of
functionalities of the interacting services can be realized.

By monitoring their behavior and environment, the inhabitant
services of a colony identify their own and the overall system’s
performance bottlenecks and resource constraints and automati-
cally adapt themselves and their communication links to overcome
these issues. Therefore, service colonies follow a proactive adap-
tation strategy where the actions are taken before problems occur.
Consequently, a service colony monitors, adapts, and optimizes its
behavior through self-diagnosis and adaptations of individual com-
ponents based on environmental conditions. Thus, it self-manages
and self-architects in a dynamic environment. Moreover, it is an
autonomous, goal-oriented, and goal-directed system that aims to
enhance the quality of service provided to its users. In this way,
service colonies extend self-adapting software systems, aiming to
reduce the costly human interventions typically required for con-
tinuous monitoring, troubleshooting, and application maintenance.

The remainder of the paper proceeds as follows. Section 2 dis-
cusses existing service-based software architectures. Then, Sec-
tion 3 presents service colonies. Section 4 discusses the envisaged
benefits of this new architectural style, while Section 5 identifies
challenges associated with the development of systems as service
colonies. Finally, Section 6 concludes the paper.
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Figure 1: Self-adaptive system architecture

2 Related Work

In this section, we discuss three areas: (micro)service-oriented ar-
chitectural styles [1, 23, 30], self-adaptive software systems [20, 21],
and self-adaptive (micro)services-based systems [10, 12].

Service-oriented architectures [1] and microservices [23, 30] are
software architectural styles that describe a system as a group of
communicating services. Often, such a system identifies a primary
service responsible for communications within the system. When
a system receives a request, it delegates the necessary functions
to its constituent services. While executing a specific functional-
ity, a service can communicate with other services in the system.
The response to the user is provided by aggregating the results of
potentially multiple service calls.

A self-adaptive system architecture is illustrated schematically
in Figure 1. A self-adaptive system can learn by observing the envi-
ronment in which it is embedded. It has monitoring and decision-
making components that are illustrated in Figure 1 as the sys-
tem monitor component and the action controller component, re-
spectively. The monitor component observes the environmental
changes [28, 29, 35]. Once a significant change is identified, the
monitor triggers the reconfiguration request. The action controller
component identifies the required changes based on static rules
or dynamically identified interventions. Subsequently, the action
controller can initiate the reconfiguration of the system. Finally,
the reconfigured system is deployed in the environment. Such self-
adaptations are implemented as a repetitive, ongoing process.

The prominent technique for developing self-adaptive software
systems is through control loop [3], which overviews themain activ-
ities of the systemwith a feedback cycle that starts with the relevant
data collected from the system environment. The MAPE-K control
loop [14, 18] monitors, analyzes, plans, and executes self-adaptive
software systems [8, 26, 29]. Policy-based adaptations implement
a static approach, where system experts analyze and design a pol-
icy repository for condition-triggered adaptations [7, 19]. These
include pre-defined scenarios and corresponding actions to adapt
the system. Rainbow [6], SASSY [27], MUSIC [13], and REACT [32]
are example frameworks for software systems with self-adaptation
control loops. However, these frameworks are not tailored towards
decentralized systems of communicating services and require a
profound knowledge of self-adaptive systems development [32].
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Rainbow specifies an abstract architecture model to validate run-
time properties of the system, evaluate them against the model of
constraint violations, and perform global- and module-level adapta-
tions of the system [6]. SASSY (Self-architecting Software Systems)
is a model-driven framework that, based on pre-defined software
adaptation patterns, aims to accommodate requirement changes
in a dynamic environment. It generates candidate software archi-
tectures and selects the one that best serves stakeholder-defined,
scenario-based quality-of-service (QoS) goals [27]. Finally, MUSIC
provides amodel-driven development approach combinedwithmid-
dleware that facilitates dynamic and automatic adaptation based
on adaptation concerns [13]. SASSY, MUSIC, and REACT are all
based on the MAPE-K control loop principles.

Self-adaptation in SOA has been discussed in the literature [9, 12].
Existing works propose middleware that supports cross-layer adap-
tation of SOA systems by considering the server-side perspec-
tives [9]. This approach supports the adaptation of the service
interface and application layer. It is based on a common meta-
model of the two layers. Furthermore, dynamic self-adaptation
in distributed service-oriented transactions [12] is an extension
of the SASSY framework [27]. This extension proposes dynamic
software adaptations in distributed transactions using a two-phase
commit protocol. Specifically, it defines adaptation patterns and
state machine models for transaction commits.

An automated approach for managing a collection of autonomic
systems is based on the concept of a meta-manager that uses a
parameterized adaptation policy [10, 11]. In this approach, a sys-
tem is seen as composed of multiple constituent systems. Each
constituent system contains a manager that keeps track of system
metrics directly related to the overall system’s quality of service
objectives. Each manager selects the actions that will improve the
system’s performance. The approach implements a hierarchical
control strategy that uses control theory to manage the behavior
of the system while outsourcing decision-making responsibility to
individual meta-manager units. However, this approach does not
address the problem of structural changes in the application layer.
Instead, it performs resource/capacity optimizations based on the
runtime cost and response time analysis.

Based on the systematic mapping study [5], the state-of-the-art
self-adaptive microservices-based systems focus on infrastructure
layer adaptations [17, 25, 34] or multi-layer adaptations [9, 24, 37],
while no studies address the problem of self-adaptation strategies in
the application layer. Furthermore, there are works on reactive adap-
tation strategies, in which adaptations are applied after problems
are identified [17, 25, 34]. Proactive adaptation strategies have been
proposed for scientific workflows [31] and IoT architectures [4].
Centralized monitoring has been practiced as the prominent adap-
tation control mechanism [24, 34, 37].

The state-of-the-art studies on self-adaptive systems focus on
the areas of cloud-based services, such as IoT and IaaS, rather than
service-based software systems [36]. These approaches, which span
across various domains (robotic, IoT, communication, automotive, e-
commerce), utilize centralized monitoring, pre-defined models, and
rule-based techniques [22, 36]. The introduction of self-managing
and self-architecting principles in software systems could increase
the sustainability of (micro)service-based architectures.

3 Service Colonies

A service colony is a system composed of software services, or inhab-
itants, that interact with each other to perform specific functions.
The inhabitants are deployed in a distributed computing environ-
ment, such as a cloud, edge computing infrastructure, or IoT devices.
Being intrinsically distributed, a service colony can exercise differ-
ent levels of scatter in its control and decision-making capabilities
across individual inhabitants, ranging from decentralized via divi-
sional or hierarchical to centralized.

An inhabitant of a colony is responsible for performing some
dedicated functionality, a service, within the system and exhibits
a degree of autonomy. Hence, inhabitants within a colony may
have diverse characteristics and capabilities, reflecting their differ-
ent roles and responsibilities. Colony inhabitants have goals they
aim to achieve and strive to optimize their performance and the
performance of the overall system. Therefore, they are self- and
situationally-aware entities. Inhabitants monitor their performance
relative to their responsibilities, accepted service obligations, and
the environment, and plan actions that ensure the desired quality of
service. In doing so, they can proactively make decisions and take
actions, such as replicating, migrating to another, more performant
compute node, splitting into two entities, and seeking integration
with another colony’s inhabitants. An inhabitant may rely on learn-
ing mechanisms to improve their operations and decision rules
based on prior experiences, allowing them to adapt and enhance
their behavior.

An inhabitant can interact with other inhabitants and the envi-
ronment. An inhabitant can request services from other inhabitants
or provide service to them. In general, interaction patterns in a
service colony can range from simple message exchanges between
two inhabitants to complex collaboration protocols involving mul-
tiple inhabitants and the environment. Through these interactions,
inhabitants coordinate activities, exchange information, and take
inputs from and return outputs of the system to the users.

The environment of a service colony comprises its inhabitants,
the computing infrastructure utilized by the colony, and the com-
munication channels that the colony inhabitants can exploit. As
special components in the environment, we identify the users of
the overall colony system. The users seek to accomplish tasks and
functions by interacting with interface entities of the colony and
receiving results of such requests. The users seek to accomplish
tasks and functions by interacting with interface entities of the
colony and receiving the results of such requests. The environment
of a service colony is, thus, inherently dynamic and stochastic.

As opposed to a self-adaptive system, a service colony has de-
centralized monitoring. In this proposed architecture, all the in-
habitants act as autonomous agents. There is no special inhabitant
responsible for overall communication, monitoring, or dynamic
adaptations. Instead, each inhabitant can learn from its behavior
and initiate actions to adjust the system automatically. Each in-
dividual inhabitant of a service colony can be (sub-)optimal, but
collectively, they aim to optimize the overall system performance.
Figure 2 sketches an example composition of service inhabitants in
a service colony. Arcs between inhabitants indicate the links used
to support communications between the individuals. Inhabitants
can communicate with other inhabitants, for example, via messages
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Figure 2: An example service colony architecture

passing through communication links. Analytical messages and
behavioral messages are the two types of special messages sent
to the environment. Each inhabitant can initiate a change in the
colony based on its analysis of itself and the environment using ana-
lytical messages. These can involve an inhabitant splitting, merging
with another inhabitant, or adding or removing communication
links between inhabitants. Furthermore, an inhabitant can send
behavioral messages to the environment, indicating its capabili-
ties or limitations. Examples of behavioral messages include the
availability of more resources to be occupied by another inhabitant,
delays in requests or responses, or the volume of data in requests
or responses.

3.1 Inhabitant Characteristics
An inhabitant is the core building element of a service colony sys-
tem. It encapsulates a delegated service, part of the functionality
of the overall system, and monitors and proactively optimizes its
performance. It is a self-contained entity. Each inhabitant has a
boundary and a designated functionality that can be clearly distin-
guished from other inhabitants. Inhabitants are autonomous agents
that can act and react independently. Inhabitants have a dynamic
state that can change over time. Inhabitants have a state that can
change over time. The future actions taken by an inhabitant depend
on its current state. Inhabitants can share their state with other in-
habitants in the colony. It is intended that an inhabitant frequently
communicates and delivers services to other inhabitants. Thus, the
current state of an inhabitant can be influenced by the state of
another inhabitant in the colony and its behavior. Inhabitants are
exploratory, and they can learn and adapt to the environment. They
can learn from the environment and adapt their behavior based on
their experience. Therefore, inhabitants can proactively adjust the
system based on their behavior. Each inhabitant has goals, making
it goal-directed and goal-oriented. An inhabitant attempts to ac-
complish these goals via its behavior and optimize the individual
and overall system objective via adaptive learning.

3.2 Inhabitant Architecture
Figure 3 depicts the architecture of an inhabitant. Each inhabitant
has a boundary and can send messages to and receive messages
from the external environment. The sub-modules of an inhabi-
tant include system functionality, communication, knowledge, and
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Figure 3: Inhabitant architecture

decision-making. These sub-modules communicate based on their
responsibilities to provide the functionalities of the inhabitant.

The communication sub-module manages all interactions of the
inhabitant and serves as its entry and exit point. Messages received
from the environment, including those from other inhabitants, are
captured by the communication module and forwarded to the rel-
evant sub-modules. Messages initiated by the inhabitant and ad-
dressed to the environment are also routed through the communi-
cation sub-module for dissemination to their recipients. Upon re-
ceiving a message, the communication module validates its content
to determine which sub-module is responsible for further process-
ing. For example, functionality-related messages, such as requests
to perform a function, are directed to the system functionality
sub-module. Messages concerning environmental behavior are for-
warded to the knowledge sub-module, while those pertaining to
configurations and adaptations of inhabitants are redirected to the
decision sub-module. Messages sent to the environment are routed
to their intended recipients. Analytical messages can target indi-
vidual inhabitants, subsets of inhabitants, or all inhabitants within
the service colony. Behavioral messages are delivered to colony
inhabitants based on the communication links within the topology
of the colony.

The service colony has obligatory system functionalities that
are distributed across its inhabitants. The system functionality sub-
module is responsible for executing the inhabitant’s delegated func-
tionalities. Each inhabitant collaborates with other inhabitants in
the service colony to fulfill these obligations. After completing a
delegated function, an inhabitant responds to the inhabitants or
users in the environment who have requested the result of the
function via the communication module. Additionally, it sends log
data to the knowledge sub-module to collect internal behavioral
information.

Inhabitants monitor themselves and their environment. The
knowledge sub-module builds the inhabitant’s intelligence that ag-
gregates the experiences of its monitoring processes. During initial-
ization, an inhabitant collects data related to the service colony’s
structure and behavior. This information includes the total num-
ber of inhabitants, their configurations, and initial behavioral data
of inhabitants. During execution, data and experiences stem from
two sources. Functional data is collected from the system function-
ality sub-module. Additionally, an inhabitant gathers behavioral
and analytical data of the service colony via the communication
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Figure 4: Service colony after merging

sub-module. The inhabitant does not accept all the data received
from the environment. It filters data based on quality and relevance.
Furthermore, it tracks the origin of the data for the decision-making
process executed by the decision sub-module.

Inhabitants can react to changes in their environment. They
learn and take action based on their behavior and the evolution
of the environment. The decision sub-module handles these learn-
ing and decision-making functions. This sub-module depends on
data provided by the knowledge sub-module. Learning is driven by
data available in the knowledge sub-module and previous decisions
made by the decision sub-module. An inhabitant can use adaptive
learning to dynamically adjust to the environment based on the
current and past behavior of the system. Data collected after imple-
menting a decision is used as feedback for learning. The decision
sub-module handles two functions. First, if data from the inhabitant
indicates a relevant behavior, it disseminates that message to the
environment via the communication sub-module. These are behav-
ioral messages. Second, it analyzes inhabitant and environment
data to identify system operations, such as operations relevant to
rearchitecting the system, and actions for improving performance.
Such information is shared with other inhabitants in the colony
via analytical messages. Each inhabitant has objectives captured as
collections of rules within the decision sub-module. These rules can
be updated dynamically via the interface provided to the decision
sub-module. Therefore, during execution, new rules can be added,
while existing rules can be modified or deleted.

3.3 Operations
An inhabitant can replicate itself. If an inhabitant experiences a high
volume of requests and no further optimizations of the inhabitant
are possible, it can decide to replicate itself to accommodate the
high volume of service requests.

A service colony can change its structure to adapt to the en-
vironment and optimize its communication patterns. Four basic
operations are proposed to support such adaptations: joining two
or more inhabitants, splitting an inhabitant into two or more in-
habitants, and adding and removing communication links between
inhabitants. Two or more inhabitants can join to form a single in-
habitant, for example, to simplify the communication structure
between themselves and the rest of the colony during a low system
load. Alternatively, such joining can be triggered to maximize the

Inhabitant 5

Inhabitant 3Inhabitant 4

Inhabitant 6

Inhabitant 1

Inhabitant 2

Inhabitant 7

Figure 5: Service colony after splitting

resource utilization in the system, hence reducing the operation
cost. A complex join of multiple inhabitants can be implemented
as a sequence of atomic joins between pairs of inhabitants. That is,
two inhabitants merge in the first step. Then, another inhabitant
joins with the previously merged inhabitant. An inhabitant can
split into multiple inhabitants via a sequence of atomic splits of one
inhabitant into two inhabitants to distribute its functionality and
responsibilities among multiple system elements. Such splittings
can be initiated based on the identified performance bottlenecks
and resource-intensive functionalities that degrade the quality of
the service provided. Hence, it can split its functionalities to maxi-
mize performance, for instance, by replicating those decomposed
services that receive high request loads. Finally, an inhabitant can
establish direct communication links with other inhabitants, for
example, to reduce current communication latency or to identify
peer inhabitants from which to request required services. Moreover,
merging and splitting operations in the system could lead to the
addition and removal of communication links in the colony.

Figure 4 depicts the re-architectured system from Figure 2 after
merging inhabitant 6 with inhabitant 5. This operation leads to
redirecting the communication links of inhabitant 6 to and from
the resulting inhabitant 5. An example splitting of inhabitant 3 is
depicted in Figure 5. In this case, inhabitant 7 is split out of the
original inhabitant 3 in the system. In this example, a communi-
cation link is established between the resulting inhabitants. The
inhabitants can use this link to request services from each other.

One can come up with different strategies for deciding which
adaptations of the system structure to perform. Such strategies can
result in the authoritative execution of the intended adaptation or
an adaptation after confirmation from peers, confirmation from
a group of inhabitants, or confirmation from the entire service
colony. Inhabitants execute authoritative actions without request-
ing confirmation from other members of the colony. Alternatively,
an inhabitant can negotiate the intended splittings and joins with
other inhabitants to ensure mutual agreement and maximal benefit
for all the negotiators.

Inhabitants can request confirmation from their peers in case
the change affects them. Similarly, if the change affects a group of
inhabitants of the colony, permissions can be requested from the
impacted inhabitants. For instance, if inhabitant 6 from Figure 5 de-
cides to split into two services, it may require obtaining permission
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Figure 6: Splitting request communication sequence

from inhabitants 1, 2, 3, and 5 since they have direct communica-
tion links with inhabitant 6. Execution of an adaptation decision
is initiated by sending a message to the relevant inhabitants to
request permission. Once these requests arrive at the recipients,
they validate the requested change. The validation is based on the
knowledge stored within the decision sub-modules. Once validated,
the inhabitants reply with approvals or rejections of the change.
If the change is approved, the requesting inhabitant executes the
change process. At the beginning of this process, the inhabitant
confirms the start of the change to the environment. After the in-
habitant receives a confirmation to start the process, it should not
accept further adaptation requests until the current execution pro-
cess is completed and confirmed. Then, the inhabitant executes the
change. After completing the change, it informs the environment by
sending the execution completion message. Then, other inhabitants
update their configurations based on the executed change. These
updates can involve adding, removing, or updating new or existing
links between inhabitants.

Figure 6 illustrates an example communication sequence for
splitting an inhabitant in a service colony. An inhabitant requests
the environment to split. After other inhabitants accept the request,
the splitting task is confirmed, and the splitting process is executed.
After successful splitting, the confirmation regarding the successful
splitting is sent to the environment. Then, the relevant inhabitants
of the colony update their knowledge and links. If the inhabitant’s
request to split is rejected, no further actions are taken, and the
communication ends. Figure 7 illustrates the scenario of merging
two inhabitants. In this case, inhabitant 2 identifies the need to
merge and acts as the leading inhabitant of the change process.
First, it seeks to get confirmation from inhabitant 1, the inhabitant
it intends to merge with. Once inhabitant 1 accepts the merging
request, the next request from inhabitant 2 to the environment is
sent to get approval to merge. If the environment responds posi-
tively, the merging process commences. After the merging process
is completed, the execution confirmation message is sent to the
environment to update relevant configurations.

4 Benefits

Both service-oriented architecture and microservices architecture
identify loosely coupled services that can be deployed separately
from the main application. These individual services can be in-
dependently designed, developed, and tested. Furthermore, using
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Figure 7: Merging request communication sequence

containerization techniques, services can auto-scale in a cloud-
based environment based on their performance. In general, a self-
adapting system handles specific domain requirements and resource
optimizations and adaptations in the infrastructure layer using re-
active error-handling functionality executed in pre-modeled sit-
uations [22, 36]. Service colonies, however, are not restricted by
pre-identified or pre-modeled scenarios. A colony can proactively
re-architect itself using a bottom-up approach and decentralized
analysis of the system.

Consider an online shopping system developed as a service-
based application. Assume that user registration and shopping cart
actions are developed as two separate services within the system.
In December, due to the festive season, the system receives a 100%
surge in the volume of requests. During this high workload period,
shopping cart services can experience performance bottlenecks, for
example, due to latency in the payment handling process. A stan-
dard way to address this scenario is to increase resources for the
entire shopping cart actions service. If this system is implemented
as a service colony, it can identify that the bottleneck is caused
by the payment transactions and split out this functionality into
a new service. Subsequently, the colony can aim to utilize avail-
able resources to scale the payment transactions, for instance, by
replicating the new payment service while keeping other shopping
cart actions within the original service. These nuanced adaptations
can drastically reduce the operating costs of the system. Moreover,
when the system experiences a low volume of requests, the shop-
ping cart actions and payment handling services can merge back
to achieve a smaller system footprint. Note that within a service
colony, such splitting and merging happen automatically, reducing
the costs of maintaining the system.

The benefits of a service colony are, thus, at least the following:
• Extension of Microservices. Service colonies build upon the
strengths of microservice-based architectures, inheriting their
flexibility, resilience, modularity, optimized resource usage, and
reduced operational overhead. Since the industry is moving to-
ward broader adoption of microservice-based systems, service
colonies contribute to this trend, providing more options for
engineering future software systems.

• Enhanced Flexibility. By fostering interactions among individ-
ual inhabitants, a service colony ensures that desired functionali-
ties are delivered flexibly. For example, multiple inhabitants can
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deliver the same functionality based on different service agree-
ment levels or with improved performance by proactively scaling
or migrating the functionality to more productive compute nodes.
In addition, each inhabitant can be developed, deployed, tested,
and updated independently.

• Proactive Fault Tolerance. Each inhabitant in the service colony
generates its own analytics and shares them throughout the
colony. The individual and collaborative analysis of this data
supports effective predictions of the system’s behavior, includ-
ing potential future faults. Since the analysis is based on the
runtime information of individual services, it can be used to
effectively monitor, predict, and proactively respond to environ-
mental changes and system faults.

• Continuous Optimization. Through continuous learning from
its operations, each inhabitant, and consequently the entire ser-
vice colony, evolves into a self-optimizing entity, constantly re-
fining itself for enhanced performance.

• Goal Orientation. Both the service colony as a whole and its
individual inhabitants have objectives and strive to achieve them.
The collaborative nature of the system fosters iterative improve-
ments toward shared goals.

• Dynamic Service Introduction and Composition. The dy-
namic introduction and integration of services within a service
colony optimize system performance and resource utilization,
seamlessly adapting to evolving demands and environmental
changes.

• Heterogeneity. A service colony hosts diverse inhabitants, each
potentially utilizing different technologies and implementations.
However, adherence to standard communication protocols en-
sures effective data dissemination throughout the ecosystem.

• Scalability. By facilitating individual scalability based on perfor-
mance metrics, a service colony can reduce maintenance costs
through proactive decision-making and predictive scaling initi-
ated by its inhabitants.

5 Challenges

The design, implementation, and maintenance of a service colony
come with challenges that are yet to be understood and studied. We
initiate this endeavor by discussing several such challenges below:
• Complex System. A service colony is a dynamic, complex sys-
tem composed of interacting components. Without hierarchical
control or global coordination, in general, slight modifications
of components and interaction patterns can have a substantial
impact on the overall high-level behavior of the system. Without
hierarchical control or global coordination, even slight modifica-
tions to components and interaction patterns can significantly
impact the system’s overall behavior. This intricate relationship
between low-level component behaviors and high-level system
behavior complicates error identification and troubleshooting.
Additionally, if the splitting of inhabitants is not controlled, the
colony can proliferate excessively, increasing system latency. Al-
though the system aims to optimize for latency, unnecessary
adjustments can result in the opposite effect.

• Verification and Validation. To verify the correctness of a
system, it is essential to test it under different conditions, for

example, by simulating environmental changes. The distributed
nature of a service colony complicates this process due to the vast
number of possible scenarios the system can execute. New tools
are required to simulate different workloads and environmental
changes to properly test service colonies. Additionally, validat-
ing the correctness of system decisions before rearchitecting is
challenging due to the system’s dynamic nature, which makes it
difficult to predict outcomes and ensure stability in advance.

• Dynamic Updates. A service colony is a dynamic system. Ad-
justments within such a system can lead to temporary unavail-
ability of certain functionalities. Therefore, sophisticated mecha-
nisms are needed to manage these dynamic adjustments effec-
tively, ensuring smooth operations during system rearchitecting.

• Heterogeneity. A service colony can host diverse inhabitants,
each implemented using different technologies. To support this
heterogeneity, standard interfaces and communication protocols
must be established. Moreover, the integration of components
implemented using different technologies complicates system
development, testing, and monitoring. Furthermore, such a het-
erogeneous system is more vulnerable to security threats.

• Persistence. A service-based system relies on databases and
data caching layers for information storage. These components
require non-trivial adaptations during the reengineering of the
system. Dynamic repartitioning and redesigning of databases can
lead to data replication, which may result in data inconsistencies.

• System Updates and Change Requests. System updates are
mandatory to comply with industry standards, and customer
change requests are inevitable. Implementing these changes in
a distributed system is a complex task. A robust system state
management process must be in place to handle updates effec-
tively. Automatically persisting the system state before and after
adjustments is essential for maintaining system operations. Addi-
tionally, a service colony must be equipped with comprehensive
mechanisms for the automatic deployment of services result-
ing from the splitting of colony inhabitants and for managing
continuous delivery and integration pipelines.

• Reengineering. Existing systems that wish to benefit from the
advantages of service colony architecture need to be reengineered
accordingly. A systematic process for reengineering software
systems into service colonies must be defined to facilitate the
migration of legacy systems to this new architectural style.

6 Conclusions

This paper introduces the concept of a service colony, a software
architectural style for developing systems as groups of autonomous,
interacting software services. Each inhabitant service in a colony is
driven by its aim to deliver services to its users, either external users
of the system or other inhabitants of the colony. Based on their past
performance, inhabitants can proactively decide to self-replicate,
split into multiple services, or join with other inhabitants to ensure
high-quality service delivery. In this way, the overall service colony
system can adapt to changing workloads by either shrinking its
footprint during periods of low workload or scaling specific high-
demand functionality during workload bursts. By performing such
adaptations, the system aims to minimize resource utilization while
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maximizing the quality of the delivered services over time. A service
colony is a bottom-up complex system characterized by numerous
interacting components that result in emergent system-level be-
havior. Consequently, service colonies aim to inherit the benefits
of complex system architectures, including resilience, robustness,
adaptability, scalability, and distributed control. Future work on
service colonies will focus on designing and evaluating different
colony inhabitant architectures and principles of their interactions
to study their effects on the global behavior of the overall system.
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